# $\label{eq:cationic complexes of arylantimony (III) chlorides Ar_nSbCl_{3-n} with tetraphenylborate and ammonium hexafluorophosphate$

Prem Raj<sup>a</sup>\*\*, Kiran Singhal<sup>a</sup>\*, Surjeet Singh<sup>a</sup> and Ishrat Hussain<sup>b</sup>

<sup>a</sup>Department of Chemistry, University of Lucknow, Lucknow, U.P., India-226007

Email-premraj123@gmail.com, kiran.singhal@gmail.com

<sup>b</sup>Department of Chemistry, Shia Post Graduate College, Lucknow, U.P., India-226007

**Abstract**– A series of hitherto unknown solid salts of tricoordinated cations of the general formula  $[ArSbL_2]^{2+}$  and  $[Ar_2SbL]^{1+}$  [where  $Ar = C_6H_5$ , *p*-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>; L = Pyridine, β-picoline, HMPA, TPPO and thiourea (TU)] have been isolated in presence of tetraphenylborate (BPh<sub>4</sub><sup>-</sup>) and hexafluorophosphate (PF<sub>6</sub><sup>-</sup>). These newely synthesised two dozen complexes have been formulated and characterised on the basis of elemental analyses, molar conductances, molecular weights and, solid state IR and solution state <sup>1</sup>H NMR spectral data. The physico-chemical data are consistent with pyramidal structure of the complexes.

Index Terms– Arylantimony(III) cationic complexes, IR, <sup>1</sup>H NMR, molecular weights and molar conductances.

#### **1 INTRODUCTION**

There has been a considerable interest centred on the chemistry of organoantimony(III) halides over the past two decades. As a result a variety of parent, SbPh<sub>n</sub>X<sub>3-n</sub> (n = 1, 2) compounds where X = halides, imide, amide, heterocyclic species [1], xanthates [2], thiophosphates [3], carboxylates [4] have been synthesized and studied. Lewis acidity of SbPh<sub>n</sub>X<sub>3-n</sub> (X = halide) towards monodentate and bidentate neutral O and N sulphur donors and electronegatively charged donors has been investigated [5]. However, the existence and isolation of solid salts of complex cations of the type [RSbL<sub>2</sub>]<sup>+2</sup> and [R<sub>2</sub>SbL]<sup>+</sup> where L = monodentate neutral ligand in combination of anionic group such as perchlorate, tetraflouroborate, tetraphynlborate etc. has not been reported to date. In sharp contrast to this organoantimony (V) cations of the type [R<sub>2</sub>SbL<sub>3</sub>]<sup>+3</sup> and [R<sub>2</sub>SbL<sub>2</sub>]<sup>+2</sup> are well documented [6-12].

In view of our interest on synthesis and isolation of molecular neutral adducts and anionic complexes of organoantimony(III) derivatives  $SbAr_nX_{3-n}$ , it was considered worthwhile to demonstrate the existence of currently unknown complex cations of the type  $[Ar_2SbL]^{+1}$  and  $[ArSbL_2]^{+2}$  isolated in combination of bulkier anion viz.  $PF_6^-$  and  $BPh_4^-$  where Ar = phenyl, p-toyl and L = pyridine,  $\beta$ -Picoline TPPO, HMPA and thiourea reported here in. Thus two dozen cationic complexes of the type  $[Ar_2SbL][Y]$  and  $ArSbL_2][Y]_2$  have been synthesised. These complexes were characterised on the basis of melting points, elemental analysis infrared and <sup>1</sup>H NMR spectra, molar conductance and molecular weight measurements.

#### **2 RESULTS AND DISCUSSION**

Under anhydrous oxygen free conditions arylantimony(III) cationic complexes of the type  $[Ar_nSbL_{3-n}]^{3-n}$  [Y]<sub>3-n</sub> can readily be obtained by the interaction of the preformed solution of the arylantimony(III) chlorides, neutral monodentate ligand and sodium salts of the anion in appropriate stoichiometry as shown below [Eqs. 1 & 2]

$$Ar_2SbCl + L + NaY \rightarrow [Ar_2SbL] [Y] + NaCl$$
(1)

 $ArSbCl_{2} + 2L + NaY \rightarrow [ArSbCl_{2}] [Y]_{2} + 2 NaCl$  USER @ 2015 http://www.ijser.org
<math display="block">(2)

where  $Ar = C_6H_5$ ,  $p-CH_3C_6H_4$ ,  $L = C_5H_5N$ ,  $\beta$ -Picoline, Ph<sub>3</sub>PO, HMPA, TU and  $Y = BPF_4$ , Ph<sub>6</sub>.

The reactions were found to proceed smoothly at room temperature affording quantitative yields of complexes. These compounds can be recrystallized with suitable organic solvent and are obtained as white crystalline solid.

The constancy in melting point after repeated crystallization as well as mixed melting points rules out the possibility of the presences of unreacted reactants. The analytical data given in Tables 1 and 2 correspond well to the proposed formulation of the complexes. Conductance measurement values  $10^{-3}$  M solutions in acetonitrile for the complexes (1,3,10,11,12) are in good agreement with the reported values 1:1 electrolyte, while the complexes (5,6,8,16) behaves as 1:2 electrolytes in the solution [9,10]. The conductance values are listed in Table 2.

#### 2.1 INFRARED SPECTRA

For all the complexes, listed in Table 3, infrared spectra data were obtained in the region 4000–200 cm<sup>-1</sup>. Important frequencies with their assignment are listed in Table 3. The absorption frequencies inhernt to aryl groups, bound to antimony do not differ significantly with those reported for uncomplexed arylantomony(III) chlorides,  $SbAr_nCl_{3-n}$  and hence need not to be discussed [1,4].

In case of nitrogen donor ligands the characteristic v(C=N) vibration reported to appear in the range 1568-1575 cm<sup>-1</sup> in free ligand undergoes a positive shift on complexation and appear Ca. 1599-1610 cm<sup>-1</sup> suggesting coordinate through nitrogen atom on the base [5].

In the case of TPPO or (Ph<sub>3</sub>PO), the characteristics v(P-O), vibration is lowered in each complex as compared to its position in free ligand (1192 cm<sup>-1</sup>). This band now appears in the range Ca. 1120-1140 cm<sup>-1</sup>, suggesting coordination through oxygen atom of the Lewis base [13].

In case of HMPA, the characteristics v(P=O), vibration appearing at 1212 cm<sup>-1</sup> in free ligand is considerably lowered to Ca. 1140 cm<sup>-1</sup> on complexation indicating coordination through oxygen atom of the Lewis base [14].

A band of strong intensity in the IR spectra of thiourea (**17 & 18**) at  $1045\pm24$  is reported to possess contribution from v(C=N) and v(C=S) modes. On coordinitation through the sulphur atom, v(C=N) suffers a positive shift while v(C=S) undergoes almost equal negative shift. These resulting spectra of the complexes, therefore, do not show any peculiar change on coordination through sulphur atom and the resulting absorption remains apparently unchanged. The positive shift of v(N-H) from 3300 cm<sup>-1</sup> in free thiourea to approx. 3380 cm<sup>-1</sup> in the complexes indicates coordination through nitrogen atom of the ligand [15].

The v(Sb-O) frequency for the cations,  $[ArSb(Ph_3PO)_2]^{+2}$  and  $[Ar_2Sb(Ph_3PO)]^{+1}$  is located in the range 410-425 cm<sup>-1</sup>. The proposed assignments for the v(Sb-O) frequency for these complex cations are consistent with the v(Sb-O) frequencies reported for the complexes containing Sb-O linkage [16].

The assignment for v(Sb-N) bond could not be made with certainty due to complex nature of the spectra. However, it is tentatively assigned in the range 350-370 cm<sup>-1</sup>.

The Sb-C bond corresponding to y mode of the phenyl groups appears in the range 460-480 cm<sup>-1</sup> [16].

The characteristics vibration due to anionic groups  $BPh_4^-$  (1280 vs. 1280s) and  $PF_6^-$  (840 vs. 560 s) do not show any significant shifting as compared to free anions vibration and are given in Tables-3 [8-13].

## 2.2<sup>1</sup>H NMR SPECTRA

The <sup>1</sup>H NMR spectra of the representative compound  $[(p-CH_3C_6H_4)Sb(TPPO)_2][BPh_4]_2$  (20) showed a singlet at  $\delta$  2.40 ppm (due to  $-CH_3$  group) and multiplets for phenyl protons centred at  $\delta$  7.90 ppm,  $\delta$  7.20 ppm and  $\delta$  7.05 ppm of which the former (lower field multiplet) is attributed to *ortho* and later two (high field multiplet) are attributed to *meta* and *para* protons of phenyl groups.

Thus on the basis of IR, <sup>1</sup>H NMR spectra, molar conductance and molecular weight measurements,

the newly synthesised complex cations are assigned a pyramidal structure as shown below (figure-1):

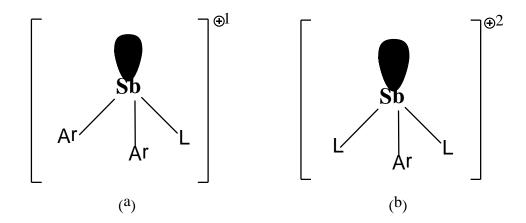



Fig 1. Suggested structure for [Ar<sub>2</sub>SbL]<sup>+1</sup> and [ArSbL<sub>2</sub>]<sup>+2</sup> cations.

#### **3 EXPERIMENTAL**

Preparation of diarylantinmony(III) chloride, (Ar<sub>2</sub>SbCl), arylantinmony(III) dichloride (ArSbCl<sub>2</sub>) (Ar = C<sub>6</sub>H<sub>5</sub>, *p*-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>) were prepared by the reported method [17]. Aldrich were used as such without further purification.

Typical experimental details of the few reactions are discussed below. Relevant IR assignments, <sup>1</sup>H NMR spectra, analytical data and molar conductance values are listed in Tables 2 and 3. Special precautions were taken to exclude the moisture.

## 3.1 Reactions of the Dipenhylantimony(III) Chloride with $\beta$ -picoline and Sodium Tetraphenyl Borate: [Ph<sub>2</sub>Sb ( $\beta$ -pic)]BPh<sub>4</sub> (1)

In an oxygen free environment dipenhylantimony (III) chloride (0.311 g, 1 mmol) and neutral ligand  $\beta$ picoline (0.093g, 1mmol) was taken in dry chloroform and sodium tetraphenylborate (0.342 g, 1 mmol) in dry methanol was added to this solution. After stirring the mixture for about 6 hr it was refluxed for 2h and NaCl formed as a precipitate was filtered off. The filtrate on concentration *in vacuo*, afforded a white solid which was crystallised by Petroleum ether (40°-60°C). Yield: 0.41 g (61%);

# 3.2 Reactions of the Di-(*p*-toyl) antimony(III) Chloride with $\beta$ -picoline and Ammonium Hexafluorophosphate: [(p-toyl)<sub>2</sub> Sb ( $\beta$ -Pic)] PF<sub>6</sub>(4)

M.p. : 150 °C.

Di-(*p*-toyl) antimony (III) chloride (0.339 g, 1 mmol) and neutral ligand  $\beta$ -picoline (0.093 g, 1 mmol) was taken in dry chloroform and ammonium Hexafluorophosphate (0.163 g, 1 mmol) in dry methanol was added to this solution. After stirring the mixture for about 7 hr., it was refluxed for 1h and NH<sub>4</sub>Cl formed as a precipitate was filtered off. The filtrate on concentration *in vacuo*, afforded a white solid which was crystallised by benzene.

Yield: 0.41 g (77%); M.p.: 200 °C.

# 3.3 Reactions of the Penhylantimony(III) DiChloride with Pyridine and Sodium Tetraphenyl Borate: [PhSb (Py)<sub>2</sub>] [BPh<sub>4</sub>]<sub>2</sub> (13)

In an anhydrous condition, penhylantimony (III) dichloride (0.270 g, 1 mmol) and neutral ligand Pyridine (0.158 g, 2 mmol) was taken in dry chloroform and sodium tetraphenylborate (0.648 g, 2 mmol) in dry methanol was added to this solution. After stirring the mixture for about 5 hr., it was refluxed for 3h and NaCl so formed as a precipitate was filtered off. The filtrate on concentration *in vacuo*, afforded a white solid which was crystallised by Petroleum ether  $(40^{\circ}-60^{\circ}C)$ .

# 3.4 Reactions of the Phenylantimony(III) Dichloride with Pyridine and Ammonium Hexafluorophosphate: $[PhSb (Py)_2][PF_6]_2$ (15)

In an anhydrous condition, phenylantimony (III) dichloride (0.270 g,1 mmol) and neutral ligand Pyridine (0.158 g, 2 mmol) was taken in dry chloroform and Ammonium Hexafluorophosphate (0.326 g, 2 mmol) in dry methanol was added to this solution. After stirring the mixture for about 6 hr., it was refluxed for 3h and NH<sub>4</sub>Cl formed as a precipitate was filtered off. The filtrate on concentration *in vacuo*, afforded a cream solid which was crystallised by Petroleum ether ( $40^{\circ}-60^{\circ}$ C).

# 3.5 Reactions of the (p-toyl) antimony(III) Dichloride with Thiourea and Sodium Tetraphenyl Borate :[(p-Tol)Sb(TU)<sub>2</sub>][BPh<sub>4</sub>]<sub>2</sub>(18)

In an oxygen free environment (*p*-toyl) antimony (III) dichloride (0.284g , 1 mmol) and neutral ligand thiourea (0.152 g , 2 mmol) was taken in dry chloroform and sodium tetraphenylborate (0.684 g, 1 mmol) in dry methanol was added to this solution. After stirring the mixture for about 7 hr, it was refluxed for 2h more and NaCl thus formed as a precipitate was filtered off. The filtrate on concentration *in vacuo*, afforded a white solid which was crystallised by Benzene.

Yield: 0.87 g (75%); M.p.: 200°C.

3.6 Reactions of the Di-(*p*-toyl) antimony(III) Chloride with Triphenylphosphine Oxide and Sodium Tetra phenyl Borate :[( p-Tol)<sub>2</sub>Sb (Ph<sub>3</sub>PO)]BPh<sub>4</sub> (20)

In an oxygen free environment Di-(p-toyl) antimony (III) Chloride (0.339g, 1 mmol) and neutral ligand Triphenylphosphine Oxide (0.278 g, 1 mmol) was taken in dry chloroform and sodium tetraphenylborate (0.342g, 1 mmol) in dry methanol was added to this solution. After stirring the mixture for about 6 hr., it was refluxed for 2h and NaCl formed as a precipitate was filtered off. The filtrate on concentration *in vacuo*, afforded a white solid which was crystallised by Petroleum ether (40°-60°C).

Yield: 0.62g (68%); M.p.: 180 °C.

## 3.7 Reactions of the Dipenhylantimony(III) Chloride with HMPA and Sodium Tetraphenyl Borate: [Ph<sub>2</sub>Sb (HMPA)] BPh<sub>4</sub> (22)

In an anhydrous condition, dipenhylantimony (III) chloride (0.311 g, 1 mmol) and neutral ligand HMPA (0.179g, 1 mmol) was taken in dry chloroform and sodium tetraphenylborate (0.342 g, 1 mmol) in methanol was added to this solution. After stirring the mixture for about 7 hr., it was refluxed for 2h and NaCl formed as a precipitate was filtered off. The filtrate on concentration *in vacuo*, afforded a white solid which was crystallised by Petroleum ether  $(40^{\circ}-60^{\circ}C)$ .

Yield: 0.49 g (64%);

### M.p.: 180°C.

## 3.8 Reactions of the Phenylantimony(III) Dihloride with HMPA and Sodium Tetraphenyl Borate: [PhSbCl<sub>2</sub> (HMPA)<sub>2</sub>] [BPh<sub>4</sub>]<sub>2</sub>(24)

In an anhydrous condition, the phenylantimony (III) dichloride (0.270 g, 1 mmol) and neutral ligand HMPA (0.358 g, 2 mmol) was taken in dry chloroform and sodium tetraphenylborate (0.648 g, 2 mmol) in methanol was added to this solution. After stirring the mixture for about 7 hr., it was refluxed for 2h and NaCl formed as a precipitate was filtered off. The filtrate on concentration in vacuo, afforded a white solid which was crystallised by Petroleum ether  $(40^{\circ}-60^{\circ}C)$ .

> M.p.: 90°C Yield: 0.08 g (70%);

### Acknowledgment

The authors are thankful to Head, Chemistry Department, University of Lucknow, Lucknow, U.P., India for providing necessary laboratory facilities and to University Grant Commission, New Delhi, India for providing financial assistance to Dr. (Mrs.) Kiran Singhal through a major research project vide no. 37-429/2009SR.

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 ISSN 2229-5518

| C.No. | Complex                                                      | $\begin{array}{c} Ar_n SbCl_{(3-n)} (g) \ n=1\&2\\ Solvent \end{array}$  | NaY(g) Solvent                                     | Ligand (g)Solvent                                                | M.p<br>( <sup>0</sup> C) | Colour          | Yield<br>(g) | (%) |
|-------|--------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|--------------------------|-----------------|--------------|-----|
|       | L = β-picoline                                               |                                                                          |                                                    |                                                                  |                          |                 |              |     |
| 1.    | [Ph <sub>2</sub> SbL] [BPh <sub>4</sub> ]                    | $Ph_2SbCl(0.311g)$<br>(CHCl <sub>3</sub> )                               | NaBPh <sub>4</sub> (0.342g)<br>(MeOH)              | $\beta$ –Picoline(0.813g)<br>(CHCl <sub>3</sub> )                | $150^{\circ}$            | White           | 0.41         | 61  |
| 2.    | $[Ph_2SbL][PF_6]$                                            | $\frac{Ph_2SbCl(0.311g)}{(CHCl_3)}$                                      | $NH_4PF_6(0.163g)$<br>(MeOH)                       | $\beta$ -Picoline(0.093g)<br>(CHCl <sub>3</sub> )                | 85°                      | Off<br>White    | 0.37         | 72  |
| 3.    | $[(p-toyl)_2SbL_2][BPh_4]$                                   | $(p-toyl)_2$ SbCl $(0.339g)$<br>(CHCl <sub>3</sub> )                     | NaBPh <sub>4</sub> (0.342g)<br>(MeOH)              | $\beta$ -Picoline(0.093g)<br>(CHCl <sub>3</sub> )                | 124°                     | Off<br>White    | 0.55         | 77  |
| 4.    | [(p-toyl) <sub>2</sub> SbL][PF <sub>6</sub> ]                | (p-toyl) <sub>2</sub> SbCl (0.339g)<br>(CHCl <sub>3</sub> )              | NH <sub>4</sub> PF <sub>6</sub> (0.163g)<br>(MeOH) | $\beta$ -Picoline(0.093g)<br>(CHCl <sub>3</sub> )                | 200°                     | White           | 0.41         | 77  |
| 5.    | $[PhSbL_2][BPh_4]_2$                                         | PhSbCl <sub>2</sub> (0.270g)<br>(CHCl <sub>3</sub> )                     | NaBPh <sub>4</sub> (0.342g)<br>(MeOH)              | $\beta$ -Picoline(0.093g)<br>(CHCl <sub>3</sub> )                | 165°                     | White           | 0.5          | 71  |
| 6.    | $[PhSbL_2][PF_6]_2$                                          | Ph SbCl <sub>2</sub> (0.270g)<br>(CHCl <sub>3</sub> )                    | NH <sub>4</sub> PF <sub>6</sub> (0.326g)<br>(MeOH) | $\beta$ -Picoline(0.186g)<br>(CHCl <sub>3</sub> )                | $180^0 d$                | Light<br>Orange | 0.77         | 77  |
| 7.    | $[(p-toyl)SbL_2][PF_6]_2$                                    | (p-toyl) <sub>2</sub> SbCl <sub>2</sub> (0.248g)<br>(CHCl <sub>3</sub> ) | NaBPh <sub>4</sub> (0.684g)<br>(MeOH)              | $\beta$ -Picoline(0.186g)<br>(CHCl <sub>3</sub> )                | 180°                     | Light<br>Pink   | 0.57         | 79  |
| 8.    | $[(p-toyl)SbL_2][PF_6]_2$                                    | $(p-toyl)_2SbCl_2(0.248g)$<br>(CHCl <sub>3</sub> )                       | $NH_4PF_6(0.326g)$<br>(MeOH)                       | $\beta$ -Picoline(0.186g)<br>(CHCl <sub>3</sub> )                | -                        | Oily            |              |     |
| 9.    | [Ph <sub>2</sub> SbL][BPh <sub>4</sub> ]                     | $\frac{Ph_2SbCl(0.311g)}{(CHCl_3)}$                                      | NaBPh <sub>4</sub> (0.342g)<br>(MeOH)              | $C_5H_5N(0.079 g)$<br>(CHCl <sub>3</sub> )                       | 140                      | Off<br>White    | 0.52         | 78  |
| 10.   | [(p-toyl) <sub>2</sub> SbL][PF <sub>6</sub> ]                | $(p-toyl)_2$ SbCl (0.339g)<br>(CHCl <sub>3</sub> )                       | $NH_4PF_6(0.163g)$<br>(MeOH)                       | $C_5H_5N(0.079 g)$<br>(CHCl <sub>3</sub> )                       | 150                      | Off<br>White    | 0.42         | 80  |
| 11.   | $[Ph_2SbL][PF_6]$                                            | Ph <sub>2</sub> SbCl (0.311g)<br>(CHCl <sub>3</sub> )                    | NH <sub>4</sub> PF <sub>6</sub> (0.163g)<br>(MeOH) | C <sub>5</sub> H <sub>5</sub> N(0.079 g)<br>(CHCl <sub>3</sub> ) | 185                      | Light<br>Green  | 0.41         | 81  |
| 12.   | [(p-toyl)2SbL][BPh4]                                         | $(p-toyl)_2SbCl(0.339g)$<br>(CHCl <sub>3</sub> )                         | NaBPh <sub>4</sub> (0.342g)<br>(MeOH               | C <sub>5</sub> H <sub>5</sub> N(0.079 g)<br>(CHCl <sub>3</sub> ) | 124                      | Off<br>White    | 0.53         | 76  |
| 13.   | $[PhSbL_2][BPh_4]_2$                                         | Ph SbCl <sub>2</sub> $(0.270g)$<br>(CHCl <sub>3</sub> )                  | NaBPh <sub>4</sub> (0.684g)<br>(MeOH)              | $C_5H_5N(0.158 g)$<br>(CHCl <sub>3</sub> )                       | 165                      | White           | 0.65         | 66  |
| 14.   | [(p-toyl) SbL <sub>2</sub> ][BPh <sub>4</sub> ] <sub>2</sub> | (p-toyl)SbCl (0.284g)                                                    | NaBPh <sub>4</sub> (0.326g)                        | $C_5H_5N(0.158 \text{ g})$                                       | 180                      | Light           | 0.51         | 71  |

### Table 1 Preparation and properties of arylantimony(III) cationic complexes



|     |                                                              | (CHCl <sub>3</sub> )                                  | (MeOH)                                             | (CHCl <sub>3</sub> )                                             |     | Pink          |      |    |
|-----|--------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|-----|---------------|------|----|
| 15. | $[PhSbL_2][PF_6]_2$                                          | Ph SbCl <sub>2</sub> (0.270g)<br>(CHCl <sub>3</sub> ) | $NH_4PF_6(0.326g)$<br>(MeOH)                       | C <sub>5</sub> H <sub>5</sub> N(0.158 g)<br>(CHCl <sub>3</sub> ) | 190 | Cream         | 0.49 | 76 |
| 16. | $[(p-toyl) SbL_2][PF_6]_2$                                   | $(p-toyl)SbCl_2(0.248g)$<br>(CHCl <sub>3</sub> )      | $NH_4PF_6(0.326g)$<br>(MeOH)                       | $C_5H_5N(0.158 g)$<br>(CHCl <sub>3</sub> )                       | -   | Oily<br>Cream |      |    |
|     | L=Thiourea<br>(H2NCSNH2)                                     |                                                       |                                                    | ×                                                                |     |               |      |    |
| 17. | [Ph <sub>2</sub> SbL][BPh <sub>4</sub> ]                     | Ph <sub>2</sub> SbCl (0.311g)<br>(CHCl <sub>3</sub> ) | NaBPh <sub>2</sub> (0.342g)<br>(MeOH)              | $H_2NCSNH_2(0.076g)$<br>(CHCl <sub>3</sub> )                     | 174 | Yellow        | 0.46 | 70 |
| 18. | [(p-toyl) SbL <sub>2</sub> ][BPh <sub>4</sub> ] <sub>2</sub> | $(p-toyl)SbCl_2(0.248g)$<br>(CHCl <sub>3</sub> )      | NaBPh <sub>4</sub> (0.684g)<br>(MeOH)              | $H_2NCSNH_2(0.152g)$<br>(CHCl <sub>3</sub> )                     | 200 | white         | 0.87 | 75 |
|     | L=Ph <sub>3</sub> PO                                         |                                                       |                                                    |                                                                  |     |               |      |    |
| 19. | [Ph <sub>2</sub> SbL][BPh <sub>4</sub> ]                     | Ph <sub>2</sub> SbCl (0.311g)<br>(CHCl <sub>3</sub> ) | NaBPh <sub>4</sub> (0.342g)<br>(MeOH)              | Ph <sub>3</sub> PO(0.278)<br>(CHCl <sub>3</sub> )                | 175 | white         | 0.64 | 74 |
| 20. | [(p-toyl) <sub>2</sub> SbL][BPh <sub>4</sub> ]               | $(p-toyl)_2$ SbCl $(0.339g)$<br>(CHCl <sub>3</sub> )  | NaBPh <sub>4</sub> (0.342g)<br>(MeOH)              | Ph <sub>3</sub> PO(0.278)<br>(CHCl <sub>3</sub> )                | 60  | white         | 0.38 | 55 |
| 21. | $[Ph_2SbL][PF_6]$                                            | Ph SbCl <sub>2</sub> (0.311g)<br>(CHCl <sub>3</sub> ) | NH <sub>4</sub> PF <sub>6</sub> (0.163g)<br>(MeOH) | Ph <sub>3</sub> PO(0.278)<br>(CHCl <sub>3</sub> )                | 180 | white         | 0.49 | 64 |
|     | L=HMPA                                                       |                                                       |                                                    |                                                                  |     |               |      |    |
| 22. | [Ph <sub>2</sub> SbL][BPh <sub>4</sub> ]                     | Ph <sub>2</sub> SbCl (0.311g)<br>(CHCl <sub>3</sub> ) | NaBPh <sub>4</sub> (0.342g)<br>(MeOH)              | HMPA(0.358)<br>(CHCl <sub>3</sub> )                              | 190 | white         | 0.49 | 64 |
| 23. | [(p-toyl) <sub>2</sub> SbL][BPh <sub>4</sub> ]               | $(p-toyl)_2$ SbCl $(0.339g)$<br>(CHCl <sub>3</sub> )  | NaBPh <sub>4</sub> (0.339g)<br>(MeOH)              | HMPA(0.358)<br>(CHCl <sub>3</sub> )                              | 220 | white         | 0.55 | 69 |
| 24. | [PhSbL <sub>2</sub> ][BPh <sub>4</sub> ] <sub>2</sub>        | Ph SbCl <sub>2</sub> (0.270g)<br>(CHCl <sub>3</sub> ) | NaBPh <sub>4</sub> (0.648g)<br>(MeOH)              | HMPA(0.358)<br>(CHCl <sub>3</sub> )                              | 90  | white         | 0.09 | 70 |



| C.No. | Complex                                                      | Empirical Formula _                                 | F             | Molecular<br>conductance in |             |                                                                         |
|-------|--------------------------------------------------------------|-----------------------------------------------------|---------------|-----------------------------|-------------|-------------------------------------------------------------------------|
|       |                                                              |                                                     | С             | Н                           | Ν           | Nitrobenzene<br>(Ohm <sup>-1</sup> cm <sup>2</sup> mole <sup>-1</sup> ) |
| 1     | [Ph <sub>2</sub> SbL] [BPh <sub>4</sub> ]                    | C <sub>42</sub> H <sub>37</sub> NB Sb               | 72.8 (73.2)   | 5.31 (5.37)                 | 1.99(2.03)  | 52.6                                                                    |
| 2     | [Ph <sub>2</sub> SbL][PF <sub>6</sub> ]                      | C <sub>18</sub> H <sub>17</sub> NPF <sub>6</sub> Sb | 41.70 (42.20) | 3.25 (3.31)                 | 2.65 (2.72) | 55.1                                                                    |
| 3     | [(p-toyl) <sub>2</sub> SbL <sub>2</sub> ][BPh <sub>4</sub> ] | C <sub>44</sub> H <sub>41</sub> NB Sb               | 72.8 (73.7)   | 5.69 (5.76)                 | 1.89 (1.95) | 50.4                                                                    |
| 4     | [(p-toyl) <sub>2</sub> SbL][PF <sub>6</sub> ]                | $C_{20}H_{21}F_6NP$ Sb                              | 42.8 (44.8)   | 3.81(3.87)                  | 2.50 (2.58) | 51.8                                                                    |
| 5     | [PhSbL <sub>2</sub> ][BPh <sub>4</sub> ] <sub>2</sub>        | $C_{66}H_{59}B_2N_2$ Sb                             | 76.8 (77.4)   | 5.70 (5.76)                 | 2.68 (2.74) | 57.2                                                                    |
| 6     | $[PhSbL_2][PF_6]_2$                                          | $C_{18}H_{19}F_{12}N_2P_2\;Sb$                      | 31.3 (32.0)   | 2.74 (2.81)                 | 4.07 (4.14) | 59.6                                                                    |
| 7     | [(p-toyl)SbL <sub>2</sub> ][BPh <sub>4</sub> ] <sub>2</sub>  | $C_{67}H_{61}F_{12}N_2P_2Sb\\$                      | 76.9 (77.5)   | 5.80 (5.88)                 | 2.63 (2.70) | 56.2                                                                    |
| 8     | $[(p-toyl)SbL_2][PF_6]_2$                                    | $C_{19}H_{21}F_{12}N_2P_2Sb\\$                      | 32.8 (33.1)   | 3.00 (3.04)                 | 4.01 (4.06) | 50.7                                                                    |
| 9     | [Ph <sub>2</sub> SbL][BPh <sub>4</sub> ]                     | $C_{41}H_{35}BNSb$                                  | 72.1 (73.0)   | 5.08 (5.19)                 | 5.87 (5.95) | 53.4                                                                    |
| 10    | $[(p-toyl)_2SbL][PF_6]$                                      | $C_{19}H_{19}F_6NPSb$                               | 42.7 (43.2)   | 3.51 (3.59)                 | 2.60 (2.65) | 52.9                                                                    |
| 11    | [Ph <sub>2</sub> SbL][PF <sub>6</sub> ]                      | $C_{17}H_{15}F_6NPSb \\$                            | 40 (40.8)     | 2.94 (3.00)                 | 2.1 (2.8)   | 58.2                                                                    |
| 12    | [(p-toyl) <sub>2</sub> SbL][BPh <sub>4</sub> ]               | $C_{43}H_{39}BNSb$                                  | 72.8 (73.5)   | 5.49 (5.55)                 | 1.91 (1.99) | 57.7                                                                    |
|       |                                                              |                                                     |               |                             |             |                                                                         |

IJSER © 2015 http://www.ijser.org 1668

### Table 2 Elemental analysis of molar conductance values of organoantimony(III) cationic complexes

IJSER © 2015 http://www.ijser.org

| International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 |
|-----------------------------------------------------------------------------------------------|
| ISSN 2229-5518                                                                                |

| 13 | $[PhSbL_2][BPh_4]_2$                                         | $C_{64}H_{55}B_2N_2Sb$         | 76.5 (77.2) | 5.47 (5.52) | 2.73 (2.81) | 59.6 |
|----|--------------------------------------------------------------|--------------------------------|-------------|-------------|-------------|------|
| 14 | [(p-toyl) SbL <sub>2</sub> ][BPh <sub>4</sub> ] <sub>2</sub> | $C_{65}H_{57}B_2N_2Sb$         | 72.8 (77.3) | 5.59 (5.65) | 2.70 (2.77) | 54.6 |
| 15 | $[PhSbL_2][PF_6]_2$                                          | $C_{16}H_{15}F_{12}N_2P_2Sb\\$ | 29.0 (29.6) | 2.27 (2.23) | 4.26 (4.32) | 57.8 |
| 16 | [(p-toyl) SbL <sub>2</sub> ][PF <sub>6</sub> ] <sub>2</sub>  | $C_{17}H_{17}F_{12}N_2P_2Sb\\$ | 30.9 (31.0) | 2.41 (2.57) | 4.18 (4.23) | 51.2 |
| 17 | [Ph <sub>2</sub> SbL][BPh <sub>4</sub> ]                     | $S_{37}H_{34}BN_2SSb$          | 65.0 (66.1) | 5.01 (5.07) | 4.07(4.17)  | 58.5 |
| 18 | [(p-toyl) SbL <sub>2</sub> ][BPh <sub>4</sub> ] <sub>2</sub> | $C_{57}H_{55}B2N_4S_2Sb$       | 67.4(68.2)  | 5.40(5.48)  | 5.51(5.48)  | 53.6 |
| 19 | [Ph <sub>2</sub> SbL][BPh <sub>4</sub> ]                     | C54H45BOPSb                    | 73.7(74.2)  | 5.10(5.15)  | -           | 51.6 |
| 20 | [(p-toyl) <sub>2</sub> SbL][BPh <sub>4</sub> ]               | C56H49BOPSb                    | 73.9(74.6)  | 5.38 74.6   | -           | 54.1 |
| 21 | [Ph <sub>2</sub> SbL][PF <sub>6</sub> ]                      | $C_{30}H_{25}F_6OP_2Sb$        | 50.9(51.5)  | 3.50 3.57   | -           | 49.4 |
| 22 | [Ph <sub>2</sub> SbL][BPh <sub>4</sub> ]                     | $C_{42}H_{48}BN_3OPSb$         | 64.6(65.1)  | 6.13 6.20   | -           | 50.8 |
| 23 | [(p-toyl) <sub>2</sub> SbL][BPh <sub>4</sub> ]               | $C_{44}H_{52}BN_3OPSb$         | 64.9(65.8)  | 6.40(6.48)  | 6.40(6.48)  | 56.2 |
| 24 | $[PhSbL_2][BPh_4]_2$                                         | $C_{66}H_{81}B_2N_6O_2P_2Sb\\$ | 65.8(66.3)  | 6.0(6.7)    | 6.9(7.02)   | 58.6 |

1669

| C No - | v(C=N)/v(N-H)/v(P-O) |      | A          | n(Sh C) | Anion Engaugencies |  |
|--------|----------------------|------|------------|---------|--------------------|--|
| C. No  | Complex              | free | $\Delta v$ | v(Sb-C) | Anion Frequencies  |  |
| 1      | 1600                 | 1570 | 30         | 460     | 1280 vs. 12605     |  |
| 2      | 1610                 | 1570 | 40         | 467     | 840 vs. 5605       |  |
| 2<br>3 | 1609                 | 1570 | 39         | 465     | 1279 vs. 12585     |  |
| 4      | 1600                 | 1570 | 30         | 480     | 839 vs. 5595       |  |
| 5      | 1603                 | 1570 | 33         | 475     | 1280 vs. 12605     |  |
| 6      | 1607                 | 1570 | 37         | 480     | 840 vs. 5605       |  |
| 7      | 1610                 | 1570 | 40         | 478     | 1278 vs. 2575      |  |
| 8      | 1611                 | 1570 | 41         | 476     | 838 vs. 5585       |  |
| 9      | 1605                 | 1570 | 35         | 479     | 1280 vs. 12605     |  |
| 10     | 1601                 | 1570 | 31         | 462     | 840 vs. 5605       |  |
| 11     | 1599                 | 570  | 29         | 461     | 836 vs. 5585       |  |
| 12     | 1602                 | 1570 | 32         | 469     | 1276 vs. 2565      |  |
| 13     | 1600                 | 1570 | 30         | 460     | 1280 vs. 12605     |  |
| 14     | 1608                 | 1570 | 38         | 475     | 1276 vs. 12585     |  |
| 15     | 1605                 | 1570 | 35         | 480     | 840 vs. 5605       |  |
| 16     | 1610                 | 1570 | 40         | 461     | 838 vs. 5565       |  |
| 17     | 3380                 | 3300 | 80         | 465     | 1280 vs. 12605     |  |
| 18     | 3380                 | 3300 | 80         | 475     | 1278 vs. 12565     |  |
| 19     | 1120                 | 1192 | 72         | 480     | 1280 vs. 12605     |  |
| 20     | 1135                 | 1192 | 57         | 465     | 1276 vs. 12545     |  |
| 21     | 1140                 | 1192 | 52         | 471     | 838 vs. 5585       |  |
| 22     | 1140                 | 1212 | 72         | 460     | 1280 vs. 12605     |  |
| 23     | 1138                 | 1212 | 74         | 480     | 12795 vs. 12585    |  |
| 24     | 1134                 | 1212 | 78         | 475     | 1280 vs. 12605     |  |

 Table 3 IR data of arylantimony(III) cationic complexes

- 1. P. Raj and A.K. Agarwal, N. Mishra. Polyhedron. 5, 581 (1989).
- 2. R. K. Gupta, A.K. Rai and R.C. Mehrotra. Ind. J. Chem. 24A, 75 (1985).
- 3. B.F. Hoskins and E.R.T. Tiekinik. Inorg. Chem. 24, 3236 (1985).
- K. Singhal. Synth. React.Inorg. Met-Org. Chem. 23(8), 138 (1993), M. Hall, D.B. Sowerby, J Organomet. Chem. 315, 321, (1986) and references therein.
- 5. T.N. Srivastava and J.D. Singh. Ind. J. Chem. 22A, 128 (1983).
- 6. S.N. Bhattacharya, I. Hussain and Prem Raj. Ind. J. Chem. 19A, 594 (1980).
- 7. H. J. Emeleus and J.H. Moss. Z. Anorg. Allgem. Chem. 282, 24 (1955).
- 8. R.G. Goel and H.S. Prasad . J. Organomet. Chem. 59, 253 (1973).
- 9. P. Raj and A. K. Agarwal. Synth. React. Inorg. Metorg. Chem. 22(5), 543 (1992).
- 10. P. Raj and A. K. Agarwal and K. Singhal. Synth. React. Inorg. Met. Org. Chem. 22(10), 1471 (1972).
- 11. R.G. Goel and H.S. Prasad. Inorg. Chem. 11, 2141 (1972).
- 12. K. Singhal, P. Raj, A.K. Goswami. Synth. React. Inorg. Meetorg. Chem. (Submitted).
- 13. G.B.Decan and J.G. Green Spectrochim. Acta. 24A, 845, (1968), 25A, 335 (1969).
- 14. S. Pasnkiewicz and Buiskowski. J. Organomet. Chem. 22, 525 (1970).
- 15. P. Raj, N. Misra. Ind. J. Chem. 30A, 901 (1991).
- K. Singhal. Synth. React.Inorg. Met-Org. Chem. 23,(8), 138, (1993), M. Hall, D.B. Sowerby, J Organomet. Chem. 315, 321 (1986) and references therein.
- K. Singhal, D. K. Srivastava and P. Raj. International Journal of Scientific & Engineering Research 4(7), 2229 (2013).